Distributed Link Removal Using Local Estimation of Network Topology
نویسندگان
چکیده
منابع مشابه
assessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
Distributed Maximum Likelihood Estimation with Time-Varying Network Topology
We consider a sensor network in which each sensor may take at every time iteration a noisy linear measurement of some unknown parameter. In this context, we study a distributed consensus diffusion scheme that relies only on bidirectional communication among neighbor nodes (nodes that can communicate and exchange data), and allows every node to compute an estimate of the unknown parameter that a...
متن کاملDynamic Topology Adaptation Based on Adaptive Link Selection Algorithms for Distributed Estimation
This paper presents adaptive link selection algorithms for distributed estimation and considers their application to wireless sensor networks and smart grids. In particular, exhaustive search–based least–mean–squares(LMS)/recursive least squares(RLS) link selection algorithms and sparsity–inspired LMS/RLS link selection algorithms that can exploit the topology of networks with poor–quality link...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Network Science and Engineering
سال: 2019
ISSN: 2327-4697,2334-329X
DOI: 10.1109/tnse.2018.2813426